Comparing Biases for Minimal Network Construction with Back-Propagation

نویسندگان

  • Stephen Jose Hanson
  • Lorien Y. Pratt
چکیده

Rumelhart (1987). has proposed a method for choosing minimal or "simple" representations during learning in Back-propagation networks. This approach can be used to (a) dynamically select the number of hidden units. (b) construct a representation that is appropriate for the problem and (c) thus improve the generalization ability of Back-propagation networks. The method Rumelhart suggests involves adding penalty terms to the usual error function. In this paper we introduce Rumelhart·s minimal networks idea and compare two possible biases on the weight search space. These biases are compared in both simple counting problems and a speech recognition problem. In general. the constrained search does seem to minimize the number of hidden units required with an expected increase in local minima.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting air pollution in Tehran: Genetic algorithm and back propagation neural network

Suspended particles have deleterious effects on human health and one of the reasons why Tehran is effected is its geographically location of air pollution. One of the most important ways to reduce air pollution is to predict the concentration of pollutants. This paper proposed a hybrid method to predict the air pollution in Tehran based on particulate matter less than 10 microns (PM10), and the...

متن کامل

Estimation of pull-in instability voltage of Euler-Bernoulli micro beam by back propagation artificial neural network

The static pull-in instability of beam-type micro-electromechanical systems is theoretically investigated. Two engineering cases including cantilever and double cantilever micro-beam are considered. Considering the mid-plane stretching as the source of the nonlinearity in the beam behavior, a nonlinear size-dependent Euler-Bernoulli beam model is used based on a modified couple stress theory, c...

متن کامل

Estimation of pull-in instability voltage of Euler-Bernoulli micro beam by back propagation artificial neural network

The static pull-in instability of beam-type micro-electromechanical systems is theoretically investigated. Two engineering cases including cantilever and double cantilever micro-beam are considered. Considering the mid-plane stretching as the source of the nonlinearity in the beam behavior, a nonlinear size-dependent Euler-Bernoulli beam model is used based on a modified couple stress theory, c...

متن کامل

A Robust Methodology for Prediction of DT Wireline Log

DT log is one of the most frequently used wireline logs to determine compression wave velocity. This log is commonly used to gain insight into the elastic and petrophysical parameters of reservoir rocks. Acquisition of DT log is, however, a very expensive and time consuming task. Thus prediction of this log by any means can be a great help by decreasing the amount of money that needs to be allo...

متن کامل

Back Propagation Neural Network by Comparing Hidden Neurons: Case study on Breast Cancer Diagnosis

This paper investigates the potential of applying the feed forward neural network architecture for the classification of breast cancer. Back-propagation algorithm is used for training multi-layer artificial neural network. Missing values are replaced with median method before the construction of the network. This paper presents the results of a comparison among ten different hidden neuron initi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1988